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Abstract

This paper briefly addresses the computational requirements for
the analysis of complete configurations of aircraft and spacecraft cur-
rently under design to be used for advanced transportation in com-
mercial applications as well as in space flight. The discussion clearly
shows that massively parallel systems are the only alternative which
is both cost effective and on the other hand can provide the necessary
TeraFlops, needed to satisfy the narrow design margins of modern ve-
hicles. It is assumed that the solution of the governing physical equa-
tions, i.e., the Navier-Stokes equations which may be complemented
by chemistry and turbulence models, is done on multiblock grids. This
technique is situated between the fully structured approach of classi-
cal boundary fitted grids and the fully unstructured tetrahedra grids.
A fully structured grid best represents the flow physiscs, while the
unstructured grid gives best geometrical flexiblity. The multiblock
grid employed is structured within a block, but completely unstruc-
tured on the block level. While a completely unstructured grid is not
straightforward to parallelize, the above mentioned multiblock grid
is inherently parallel, in particular for MIMD machines. In this pa-
per guidelines are provided for setting up or modifying an existing
sequential code so that a direct parallelization on a massively parallel
system is possible. Results are presented for three parallel systems,
namely the Intel hypercube, the Ncube hypercube, and the FPS 500
system. Some preliminary results for an 8K CM2 machine will also be
mentioned. The code run is the 2D grid generation module of Grid* ,
which is a general 2D and 3D grid generation code for complex geome-
tries. A system of nonJjnear Poisson equations is solved. This code
is also a good testcase for complex fluid dynamics codes, since the
same datastructures are used. All systems provided good speedups,
but message passing MIMD systems seem to be best suited for large
multiblock applications.



1 Parallel Computing for Aerospace Applications

At present several new spaceplanes as well as aircraft are under design in Europe, the
United States and Japan. The aerodynamics and aerothermodynamics behavior of these
vehicles has to be accurately kown to make them actually fly. Since the time of Prandtl,
windtunnels played a prominent role in the design and analysis of configurations. Since
the last two decades CFD (Computational Fluid Dynamics) has made substantial progress
and can now be considered as an alternative to windtunnel measurements for certain types
of flow, e.g. inviscid flow for complex 3D geometries both for perfect gas and real gas
effects or can be used to supplement windtunnel data. In the support of the Hermes
space plane, which may serve as an example here, numerous 3D Euler calculations have
been performed in ESTEC using different algorithms and grids, achieving a very good
agreement of predicted pitching moment coefficients for Ma numbers between 10 and 25
and angles of attack up to 30 degrees. Similar computations have been performed for
the Space Shuttle [6]. However, prediction of turbulence level and transition are a major
problem for computations and windtunnels alike. Usage of windtunnel data for free
flight is difficult since extrapolation leads to additional uncertainties. For high speed flow
when chemistry plays a role, a scaled down model can not be subjected to the same flow
phenomena as the real vehicle. Reynolds number, temperature and species disscociation
cannot be doubled at the same time in the windtunnel. Also, the amount of information
obtained from experiments is very limited. On the other hand, grid generation for complex
geometries is still a major issue, especially when very different length scales have to be
resolved.

Flexibility and versatility of numerical simulation allow the separation of physical ef-
fects and to investigate the influence of geometry. In addtion, new visualization software,
e.g. Visual3 from MIT [4], have implemented all the standard windtunnel visualization
techniques so that a very realistic picture of the flow can be obtained. Although turn
around time of a moderately large simulation run is relativley small when compared to
windtunnel testing, parametric studies, for example of heat flux with a Navier-Stokes
code for a complete vehicle for a full flight trajectory is not feasible because of excessive
computing time. A grid size of 10 million points for viscous calculations for a 3D vehicle
has been estimated for accurate heat flux studies. Needing about 8,000 iterations with
an implicit N-S solver to reach the steady state for a Mach number of 25 with an op-
erational cost of approximately 8,000 Flops per point and iteration, a total of 6.4 * 1014
floating point operations has to be performed. For equilibrium real gas calculations, the
additional cost is between 20% ~ 30%. Here a laminar case was assumed. Even with

the Teraflop machine available, some 650 seconds would be needed. Moreover, since 1
Teraflop sustained has to be delivered, the announcement of a 10 Teraflop peak machine
should be awaited. Inclusion of complex turbulence models and nonequlibrium flow will
substantially increase the computing time. Since aerodynamics and aerothermodynamics
have a direct impact on the structure, a realistic evaluation of a vehicle eventually has to
couple the flow solution with an aeroelasticity code. In some cases, a coupling of aero-
dynamics with Maxwell's equations may be needed to obtain vehicle sLa.peoptimization.



These enormous computational requirements can not be satiesfied with the convential von
Neumann architecture. First, the speed of light is a limiting factor in signal propagation,
demanding miniaturization to an extent not feasible since the dissipation of generated
heat demands a certain chip size. Second, this approach will not be cost effective in
comparison with of the shelf chips. Hence, instead of using a single or a small number of
extremely powerful processors, a large set of reasonably powerful from the shelf proces-

sors (Intel i860, Mips R4000 etc.) can be assembled, each with its own private memory
and then made to communicate via the exchange of messages. This architecture is called
MIMD (Multiple Instructions Multiple Data). This massively parallel architecture is par-
ticularly well suited to multiblock problems, where one or more blocks are mapped on a
single processor.

The above remarks should not lead to the conclusion that windtunnel testing will be
obsolete in the near future. Experimental testing is mandatory to confirm the results
computed and to validate codes as well as to provide information where computation is
not feasible or not accurate enough, e.g. in cases of severe flow separation. However, CFD
and in particular parallel CFD may have a more prominent role in aerospace design in
the corning years.

2 Parallel Programming Languages for CFD

This section is based on the first author's work parallelizing Grid* and NSS* and there-
fore expresses mostly his view. First, it is believed that a new parallel language for CFD
is not needed. The currently existing languages Fortran, C, and C++, enhanced by par-
allel constructs, will be able to provide the necessary functionality. Fortran has been the

traditional language in the scientific and engineering field since the late 50's, and a large
number of codes is available. Before the three languages are briefly discussed, a list of
desirable kltures of a general purpose language is given below.

. desirable features of a high level parallel language for CFD :

1. wide availability

2. portability (both for sequential and parallel machines)

3. maintaining and debugging of code

4. rapid prototyping code (high productivity)

5. compact code

6. vesatile loop and conditional statements

7. dynamic storage allocation

8. recursion
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Figure 1: Mach number distribution for the Shuttle orbiter obtained from the
N-S solver ESA-NSS using a 4 block grid. Free stream values are lvIa = 25.
A perfect gas model was used since the calculations simulate wind tunnel
conditions of R3, Chalais.



9. safety ( handling of internal error situations as well as wrong input
data)

10. pointers

11. advanced data types (structures)

12. classes ( information hiding)

13. operator overloading ( simple example: + for addition of both
real numbers and matrices)

14. conditional compilation ( implementation of conditional statements
to run the same code on different parallel machines)

It is believed that the aspects of software engineering in the solution of fluid dynamics
and theromodynamics problems have not been given due attention by the engineering
community. The prevailing attitude of "putting it on the computer" has lead in many
cases to inadequate but costly "solutions" (the word tool is avoided here). Many of the
tOpICSof the above list have not been considered in software projects, leading to poorely
debugged and unsafe code and also to large cost overruns of the project. Since the
parallelization of a code adds to its complexity, the following remarks are worthwhile to
consider. The widely used F77 does not possess any modern constructs. The proposed
upgrade F90 will have some modern features available. The widely used ANSI C has all
the features listed, except classes. Dynamic storage allocation is somewhat limited, since
arrays have to be dynamically allocated via pointers. All features listed are provided by
C++. The following recommendation, motivated below, is therefore given.

. C++ is the language of choice for the 90's, but not all of its advanced
features will be needed for CFD.

As has been aforesaid most of todays compute intensive codes are written in For-
tran. Grid* and NSS* both were started in Fortran. Soon it became obvious that the

implementation of advanced data structures was impossible in F77 (the same holds for
F90) and one either would have to write a preprocessor or to find a more suitable tool.
For example, manipulation of a complete block was impossible, because a data structure

named "block" could not be defined. A block consists of faces, a face is built from edges,
an edge is formed by points, and eventually a point comprises a set of 3 floating point
numbers. In addition, the size of an object is not known a priori. It is not known how
many blocks comprise the SD (solution domain) or how many points are on a face. The
number of objects is determined at run time only. Hence, the most natural way is to allo-
cate memory for an object when it is needed and to free it when this is no longer the case.
If this cannot be done, resources are wasted. The 2D Fortran version of NSS* needs 2.5

times more memory than the C version. On the IBM Risc 6000/540 model the execution
time of the Fortran code (highest optimization level) is 10% higher than for the C version
and its code size is approximately three times larger. In order to achieve some type of
functionality in Fortran, all kinds of artificial constructions have to be made. This quickly



leads to a messy code, which can be maintained by the author only. Moreover, nearly all
of these codes are unsafe for the user, that means, a new set of input parameters often
leads to an undefined program state. A substantial reduction in productivity is the result
where the user has to debug the source code for months. Many of these problems can be
avoided by using the proper tools, namely ANSI C and C++. For example, Grid* with
all its modules [11]comprises only 3,000 lines of code. It has also been experienced that
modifications of the code are straightforward since objects are modified, but the relations
between objects remain the same, increasing code safety. The additional advantage of
C++ is that classes can be defined which contain both data structures and functions and
then operations among classes can be performed. This leads to well defined interfaces
between classes, and code modifications have only local effects. Operator overloading
allows to define any type of operation between classes. A rudimentary installation will
also be available in F90. It is therefore believed that using ANSI C or C++ will be much
more cost effective both in terms of human and of hardware resources. For the much more

sophisticated programming tasks lying ahead, code safety will be extremely important.
Also for that reason ANSI C and C++ should be preferred.

The major difficulty in using C is the new way of thinking that is needed. Thinking in
objects, advanced data structures, and pointers as well as in classes is new for the Fortran
programmer and therefore may take some time.

3 Multiblock Codes and MIMD Machines

Grid* [11] is a general multiblock code, used to generate overlapping, multiblock grids
for arbitrary 3D geometries. The output of this code is directly coupled to the 3D Navier-
Stokes solver NSS* , which produces a solution without any further user interaction,
provided that the grid has the quality needed for the flow physics to be simulated. The
asterisk in the code names stands for the wildcard symbol, indicating that they are a
collection of C routines, based on the UNIX toolbox concept. Both codes have the same
data structures, and therefore the same communication behavior. Of course, the ratio
between communication and computation for the two codes is different. The N-S solver
needs a factor of 100 more floating point operations per grid point than the grid generator.
Any efficieny numbers obtained from the parallelization of the grid generator can be
considered to be substantially exceeded for the flow solver. It should be noted that the
multiblock concept is introduced because of the complex geometry. That is, even on a
sequential computer communication between blocks is necessary. Hence, multiblock codes
lead to an inherently parallel program code. In order to determine the blocksize for NSS*
for which a high speedup can be expected, the following information has to be known.

. assumption: a grid of about 1 million grid points is distributed In 100
processors

. assumption: the floating point performance for the i860 is 5 MFlops



. the blocksize is approximately 30*30*10 internal points

. the solution scheme of NSS* needs an overlap of 2 points at each face
(3rd order accuracy in shock free area)

. the memory overhead caused by multiblock is therefore about 66 %

. the number of IPs (internal points) is 9000 and the number of BPs
(boundary points) is 6000 per block

. the compute time for NSS* is 7200 ms jiterationjblock (based on 5
MFlops)

. the communication time for NSS* is 360 ms jiteration/block based on
a sustained transfer rate of 1MByte/sec.

. for interblock communication a maximum of 6 send and 6 receive mes-

sages per block is needed; in total 12 faces have to be sent:

. the amount of communication in bytes per block and per iteration is:
::::::360 KB = 5 variables (p,pu,pv,pw, e) of
8bytes * 4faces * 30 * 30 + 8faces * 30 * 10 +
5 variables (8p, 8pu, 8pv, 8pw, 8e)of
8bytes * 2faces * 30 * 30 + 4faces * 30 * 10

. communication time:
tsend= 6 * 9 * 10-2 + 3.6 * 105* 1 * 1O-3ms ::::::360 ms where the first
term nenotes the latency. A communication speed of 1MBjs has been
assumed [5].

For NSS* the values of the 5 conservative variables and their increments have to be

sent across each face of a block. Since the increments denote differences, an overlap of
1 is needed only. The communication overhead is determined from the formula tsend =
0.047tca{c that is communication overhead for sending messages is :::::: 5 % . The time for
encoding and decoding messages has to be added leading to an estimated 8% overhead,
based on the possibilty of subdividing the grid into blocks of exactly equal size. That this
can be achieved for a complete vehicle is demonstrated in [5]. Therefore, even for a N-S
solver like NSS* , communication will be an appreciable part of the overall computation
time. The conclusion is that the communication bandwidth used iI. the iPSe 860 should

be upgraded by at least a factor of 10. A machine with the codename Sigma, announced
by Intel for the 3rd quarter of 92 will have a peak communication speed of about 200
MB/s, which is approximately an increase of two orders of magnitude over the current
iPSe 860. If there was a Teraflop machine consisting of 1000 nodes, each with a compute
power of 1 GFlop, a sustained communication rate of 50 MBjs has to be achieved. It
seems to be the case that under the communication load of a 3D N-S solver, 5 to 10 % of

the peak communication speed can be obtained [5].



4 System Commands and System calls for CFD Multi-
block Codes

The Intel prallel system commands shall serve as an example for the parallelization calls
needed by an application to allocate resources. In order to achieve the best portability
and for the ease of implementati.)n, the following guidelines should be considered already
when a sequential code is developed or being modified. These guidelines can be directly
implemented in the sequential version to minimize the parallelization effort. Hence, it
should be possible to obtain a version of the code that is usable on both sequential and
massively parallel systems by isolating interblock communication.

. system commands (UNIX makefile) instead of system calls (user pro-
gram) should be used to control the parallel machine (getcube, load,
relcube etc.). The system commands and the system calls managing
the resources have the same functionality, but work on different levels.
Separation of resource management (makefile) anc1user program will
enhance portability.

. minimize number of system calls for message passing
(csendO,crecvO,irecvO etc.) in the user program.

. all nodes should be on the same level, i.e., there should be no host
program. Since all blocks are treated equal and are loosely synchronized
by message passing via block faces, a host is not needed.

. use CFS (Concurrent File System) for input/output: for a large num-
ber of processors the number of files can be several hundred, since a
data file for each block exists.

. subdivide input into global data (all nodes) and
local data (single node).

. length in bytes of message buffer should be a multiple of 4 to avoid
internal alignment calculations.

. check for pending messages before a function is left to reduce possible
deadlocks.

Parallelizing the 2D version of Grid* and working on the parallelization of NSS* ,
it has been found that only a few system calls are needed, which can be applied in a
straightforward manner. The system calls used provide general information and perform
the message passing. In the following the functions along with their argument list are
explained. In order to achieve a loosely coupled synchronization among the blocks, send
and receive commands are used. At the end of each iteration, each block issues 6 receive



and 6 send commands (if the face is a physical boundary no information needs to be
exchanged). Only after all receive commands have been processed, block boundaries can
be updated and after that the next iteration can be started. Therefore, the following
sequence of receive and send commands is chosen. First, 6 nonblocking receive commands
are issued, irecvO, that is the code does not stop and wait until the receive is completed but
continues in its execution. The receive statements are immediately followedby 6 blocking
sends, csendO. The send command is only waiting for the availability of a communication
channel to the destination processor, but does not wait for an acknowledgement of the
receiving node. After that, the code has to wait again until all receives are completed.
Function msgwaitO using the return value of the corresponding irecvO call performs this
task. The reason for this sequence is as follows. If information for a node is available,
but no receive has been issued, the information has to be buffered and has to be read a
second time when the receive is specified.

A protocol that first synchronizes a block with its neighbors and the issues a receive
and a send loopingover all neighborsmay half the communicationtime [14]by making
use of the full duplex properties of the iPSC links.

. system calls for parallelization of CFD multiblock codes

1. mynodeO : returns node id

2. time in seconds (double precision) : dclockO

3. set breakpoint using irecv return value: msgwait(reLval)

4. returns msgid of pending or received message: infotypeO

5. nonblocking receive: irecv(msgid,r_buf,length)

6. blocking receive: crecv(msgid,r_buf,length)

7. blocking send: csend(msgid,s_buf,length,node,pid)

8. pending message? : cprobe(msgid)

In addition, commands for global communication may be needed. The function parame-
ters have the following meaning.

. int msgid,length,node,pid,reLval

. char H_buf, *s_buf

. msgid is the message identifier

. r_buf, s_buf are pointers to the names of the receive and send buffers

. length is the message length in bytes

. node denotes the processor number to which message is sent

. pid= 1 (only 1 process allowed on the i860)



5 General Parallelization Tasks for CFD Multiblock
Codes

5.1 The Four Major Parallelization Tasks for Multiblock CFD
Codes

General experience with CFD codes on massively parallel systems is described in [8], [9],
and [10]. In the parallelization of a general 3D CFD multiblock code four major tasks
have to be achieved. These are the following.

1. parallelization of Input/Output: local
solution: partition input in local and global data and use CFS, for
output each node writes directly via the CFS.

2. parallelization of generation of initial solution: local plus CFS
solution: see Sec. 5.3. The algorithm is local, but datafiles of neigh-
boring blocks have to be read from disk.

3. parallelization of block to block communication: global
solution: when a plane (face) is exchanged between neighboring blocks,
it is sent into a buffer, rotated (to get the right orientation), and sent to
the destination node. This procedure is the same both for the sequential
and the parallel codes.

4. parallelization of real gas table lookup for the flow solver: local
solution: the present size of real gas tables is approximately 2 MB.
They are stored in each pocessor. With the real gas table generation
technique from Vinokur and Liu a size of less than 512 KB can be
guarateed for density and energy in the range of of 10-9 < p < 103
and 10-5 < € < 108 where p has dimension kg/m3 and € is measured
in Joule [13].

5.2 General Rules: Input/Output Parallelization

Input Data for Grid* and NSS* have been split into two categories, namely global and
local data. The topology file named "top.cmd" which contains information about block
connectivity and block dimensions is global and has to be stored in each node. The size
of this file is n * (3 + 6 *8) *sizeof(int) bytes where n denotes the number of nodes, that
is for 128 nodes some 74 KB are needed, which is a negligible amount of storage. The
geometry files are named" bloc#no" and are local. The current bloc number is denoted
by no. This file contains the grid point coordinates. The size is 3*1* J *J{ *sizeo f(Jloat)



bytes, where I, J, J{ denote maximum block dimensions in the respective coordinate di-
rections. For the example chosen, the size is 3 * 30 * 30 * 10 * 8 ~ 216 KB for an 8byte
floating point number. The files can be moved to the CFS by the system call creadO
or the standard fprintfO can be used, which causes an overhead of 50 %. The output
of a node is directly sent to the CFS and assembled via a Shell script if necessary. The
structure of the "top.cmd" file for a 3D one block input example is shown below.

# connectivity information for 3D example
# bloc number
# bloc dimensions I, J, J{
# face numbering: l=down, 2=front, 3=left, 4=right, 5=back, 6=up
# face type: O=fixed boundary,
# l=fixed (interpolate
# initial solution by starting from that face)
# 2=matching( extending boundary),
# 3=matching(nonextending)
# neighboring_blo('-Ilumber(L.n, 0 if no neighbor)
# neighboring.1ace-Ilumber (1...6, 0 if no neighbor)
# neighboring.1ace_orientation(0...3), rotation 0, ~ etc.
# CF= Control Function (grid point clustering)
# neighboring_bloc..number (L.n, 0 if no neighbor)
# neighboring.1ace..number (1...6, 0 if no neighbor)
# neighboring.1ace-usage (1...8, rotation and mirroring)
#
\cntrl3d
1
666
1 1 0 0 000 0
2 1 0 000 0 0
3 1 0 000 0 0
432 300 0 0
533 2 000 0
600 0 000 0

The structure of the data file "bloc#no.inp" for a 3D multiblock is of the following
form.

# input data is a 3d plane
\plane3d
# dimension of plane
6 6

# grid point coordinates: (x,y,z)
0.000000 0.000000 0.000000
1.000000 0.000000 0.000000



2.000000 0.000000 0.000000
3.000000 0.000000 0.000000

\plane3d
6 6

0.000000 0.000000 5.000000
1.000000 0.000000 5.000000
2.000000 0.000000 5.000000
3.000000 0.000000 5.000000

This structure works both for the sequential and the parallel case. Reading the data
files sequentially does not cause a problem since it is done only once.

5.3 General Rules: Parallelization of Initial Solution Gener-
ation

In the following the parallelization of the generation of the initial solution for Grid* is

shown, which is obtained by interpolation from the boundary point distribution. A good
starting solution is essential for the convergence of the elliptic grid generation operators
and reduces the number of iterations by an order of magnitude. In general, interpolation is
straightforward. However, in the present case interpolation has to be across block bound-

aries, since the initial solution is determined by interpolating between to corresponding
fixed boundaries with an arbitrary number of blocks in between, starting from a fixed side
(type 1). Although this seems to be a nonlocal process, it can be made local, since the
topology file is stored in each processor and data files of neighboring processors can be
read from disk. In order to perform the interpolation, the total distance (number of grid
points) between two fixed sides (faces) has to be known. This information is available
from the topology file and the coordinates can be read from the data files. Therefore

no communication is needed to construct the initial solution in each block. In Fig.2 a
12 block grid for an airfoil is shown along with the initialization procedure. The same
algorithm is executed in each node.

[Initialize] all block coordinates to 0, set flag fixed to 0 for all faces in block.

[Loop] over all faces tracing back rays (a ray is a coordinate line in the third direction)
passing through all neighboring blocks until a fixed face is encountered.
[Store] respective blockno (topology file) Lbloc, and faceno Lface. Set fixed=l and calcu-
late distance Ldist (number of gridpoints in the corresponding direction) to fixed face.
[Initialization face?] if (fixed == 1) {

start from face with no 7 - Lface (opposite face) and trace back rays rays through all
neighboring blocks, until a fixed face in encountered.}
[Store] respective blockno, r_bloc and faceno r_face. Calculate distance r_dist.
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Figure 2: Algebraic Grid Construction: Lines emanating from fixed surfaces
are followed through all blocks until another fixed surface is met.



[Read] Lface geometry data from file "bloc#Lface.inp".
[Read] r-face geometry data from file "bloc#r-face.inp".
[Rotate] Lface plane to match local CS of current block.
[Rotate] r-face plane to match local CS of current block.
[Calculate] local distance for interpolation:
dist = Ldist+r_dist+m_dist,where IlLdistis the length of current blockin t.herespective
coordinate direction.

5.4 General Rules: Block to Block Communications

Interblock communication is performed in the following way. There exists one global
CS (coordinate system) in physical space: (x,y,z). To provide the needed geometrical
flexibility, each block has its own local CS (I,J ,K) in computational space. Any of the 8
orientations ( Fig.3), which are theoretically possible between local CSs can be chosen.
For each block a function named "savpla" writes overlap faces (type plane3D) into re-
spective buffers. For each receiving block a function named "operate3d" rotates/mirrors
each 3D plane to have the right orientation with regard to the neighboring CS. After that
function" getpIa" gets neighboring plane from the buffer to update the corresponding
overlapping face. The following calling sequence of receive and send is considered to be
advantageous. It avoids message copying from system to application buffers, which takes
place if message arrives before crecv was issued.

# request new face information by issuing a nonblocking receive
botid=irecv( 1,face-rbuf,sizeof( face-rbuf)

topid=irecv( 6,face-rbuf,sizeof(face-rbuf)
# send out new face information using blocking send
csend( 1,face..sbuf,sizeof(face-sbuf)

csend( 6,face..sbuf,sizeof( face..sbuf)
# set breakpoint for nonblocking receives
msgwait(topid)

msgwait(botid)
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6 Results for the 2D Module of Grid* on FPS, Intel,
and Ncube Architectures

In the following results for Grid* [11] are presented on several MIMD machines. Similar
results can be expected for all codes which are based on partial differential equations using
multiblock domains. The SD is subdivided in overlapping blocks with slope continuous
grid lines, and therefore no special treatment of block boundaries is needed.

The 2D module of Grid* has been used as a testcase on 3 systems, namely the
FPS 500, the Intel iPSC2, and the Ncube system. A simplified version has been also
installed on a 8K CM2 from Thinking Machines, but more work is needed to optimize
the communication. The goal of the simulations was not a direct comparison of run
times, but to find out about the effort needed to parallelize the code and to learn about
the usefulness of these machines for this type of application. A system of two nonlinear
Poisson equations is solved by SOR, generating a 2D multiblock grid. The code generates
grids for any arbitrary geometry and thus is a realistic example for the complex domains
encountered in aerospace applications. Based on this experience, a new test case simulating
the bevavior of a 3D multiblock Navier-Stokes code has been developed, but was run so
far only on the Intel Gamma and Delta machines at Caltech, using up to 512 processors
[1].

The FPS 500 has a shared memory, while Intel and Ncube have a distributed memory.
The CM2 from Thinking Machines is a SIMD (Single Instruction Multiple Data) architec-
ture. Since the architecture of the FPS 500 is not widely known, a few explanations will
be given. The FPS 500 has one scalar Spare processor and a parallel matrix procressor,
MP, which uses Intel's i860 chip as the processing element. The MP contains up to 84
i860 chips connected by a crossbar of 8 * 160 MBjs (peak). When 84 processors are used,
7 buses connecting each 12 processing elements are employed. A 64 MB memory, the so
called matrix register, was used. It also contains a vector processor which was not used
for this testcase.

All vendors have announced much more powerful systems for the second half of 92. The
Intel iPSC2 is a second generation parallel machine, and Intel has announced already its
Sigma machine, which is the 4 th generation. Approximately three orders of magnitude
separate these two machines, both for the communication behavior as well as for the

compute power. Tables 1 to 3 show performances for the Ncube, Intel and FPS systems.
No attempt was made to compare the results. First, the hardware is very different, and
second, the level of fine tuning for the code versions is very different. In particular, the
code for FPS was optimized to minimize cache faults [2]. Since the data cache of the i860
is only 8KB, it is not sure whether this procedure would be successful in 3D, when planes
instead of lines have to be handled. Intel and Ncube code are almost compatible. FPS
as a shared memory system nedds a different parallelization approach. The extension to
several hundreds or thousands of processors for the FPS remains to be demonstrated.



Table1 : Performance figures (efficiency) for the 2D module of Grid* on Ncube.
A communication step is performed after 10 iterations. A system of 2 nonlinear
Poisson equations is solved by SOR.

Table2 : Performance figures (efficiency) for the 2D module of Grid* on the Intel
iPSC2. A communication step is performed after 1 iteration.

Table3 : Performance figures (efficiency) for the 2D module of Grid* on the FPS
500 Matrix Processor. One communication step after 20 iterations. The first row
depicts efficiency for a fixed number of 84 blocks, which results in poor load bal-
ancing for the 36 and 56 processor configuration. Efficiency values of the second
row are for exactly 1 block per processor, leading to a nearly perfect load balancing

[2].

Ncube System

points per proc number of processors
1 2 4 8 16 32

30x30 1 0.82 0.59 0.36 0.21 0.11
60x30 1 0.88 0.72 0.50 0.32 0.19
60x60 1 0.94 0.84 0.66 0.44 0.31
120x60 1 0.97 0.90 0.81 0.65 0.46
130x 120 1 0.98 0.96 0.90 0.79 0.64
240x120 1 1.00 0.98 0.95 0.89 0.78

Intel iPSC2 System

points per proc number of processors
1 2 4 8 16 32

30x30 1 0.99 0.95 0.91 0.68 0.59
60x 30 1 0.99 0.96 0.93 0.75 0.63
60x 60 1 0.99 0.98 0.96 0.73 0.68
120x60 1 1.00 0.98 0.96 0.72 0.67
130x 120 1 1.00 0.99 0.94 0.73 0.72
240x 120 1 0.99 0.99 0.95 0.76 0.73

FPS 500 System

points per proc number of processors
1 12 28 36 56 84

240x 120 1 0.99 0.99 0.76 0.74 0.97
240x 120 1 0.99 0.99 0.97 1.00 0.97



7 Conclusions and Outlook

A 2D multiblock code was used as a testcase for several massively parallel systems. It has
been shown that teh multiblock approach, which is somewhere between the completely
structured and the completely unsructured approach, is ideally suited for a MIMD archi-
tecture. It is believed that this type of architecture is very suitable to handle the high
communication load that results from a loadbalanced 3D multiblock Navier-Stokes code,
and at the same time can be extended to provide several thousand powerful processors in
order to achieve the compute power needed in a cost effective way. Guidelines have been
given how to modify a sequential code to exhibit a large amount of inherent paralelism
in order to alleviate the port to a massively parallel system. A large multiblock code
can also be ported on a shared memory system, but it is doubtful whether thousands of
processors could be supported. For a SIMD architecture good results can be achieved
[12], but major modifications would be needed for the codes described in this paper.
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